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LEPER TO THE EDITOR 

About polynomials related to multiphotonic bremsstrahlung 
effects 

A Ronveaux and S Belmehdi 
Math. Phys.. Faculter Universitaires N.D. de la Paix, 5WO Namur, Belgium 

Received 18 June 1991 

Abstraet. The symmetric convolution of two Hermite functions appean as transition 
amplitude in multiphotonic Bremsstrahlung effect analysed by quantum oscillator models. 
We identify theso transition amplitudes in terms of Laguerre polynomials and we give new 
recurrence relations and a differential equation for these physical quantities. 

Polynomials obtained from the symmetric convolution of two Hermite functions have 
recently been given explicitly [ 11. These polynomials appear in multiphotonic 
Bremsstrahlung effects using harmonic oscillator models with sudden displacement of 
the equilibrium point xo. The aim of this letter is to identify these polynomials as the 
Laguerre polynomial which explain immediately the Bessel-type asymptotic behaviour. 
We give also a more direct derivation of these polynomials, a differential equation, 
and a pure recurrence relation for the transition amplitude. 

The transition amplitude between two states n and n + 9 is given by [ 1,2]: 
tm 

Cn,n+q(xo) = rl, (x)@n+q(x - xo) d x  (1) L 
where $"(x) are the normalized wavefunctions of the one-dimensional harmonic 
oscillator: 

$. (x) = (2% !&)-' I2 exp( -x2/ 2) H. (x) (2) 
and H , , ( x )  is the Hermite polynomial of  degree n normalized in the usual way: 

+m 

[H.(x)l2 exp(-x2) dx = ~ " ~ 2 " n ! .  L 
The result given in [2] for n = 1 is extended to any n in [ l ]  in the following form: 

Using the definition of the Laguerre polynomials [3] 
n ( n + 9 ) !  sk  

L'R'(s)= - 
k=O ( n - k ) ! ( q + k ) !  k !  

we can write the transition amplitude (3) as 

(4) 

( 5 )  
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from which the asymptotic behaviour is immediately obtained from the well known 
limit relation of the Laguerre polynomials [3]: 

(6 )  

where J,(x) is the usual Bessel function. With 

n !  
(7) 

and using the author notation [ 11 xo= y / f i ,  equations ( 5 )  and (6) with s = y2/4 give: 

(8) 

~- n - 9 / 2  

( n + q ) !  

Rc!l!io" (5) CI" be proved dlrcct!y 1" the fe!!ewing way. s:arti-g f:e: <!I 

cfi,w+q(x )--[22"+qn!(n+q)!]-"2 dx 
1 

O -J;; 2 
+m 

with s=x-x0/2.  
The Taylor-Maclaurin development of H.(s i x0/2) in the integral gives: 

Now the Appel property of the Hermite polynomials: 

H;=2nH,_, 

and the orthogonality property of the Hermite polynomi; reduces : 
to the single sum (3) ( r = q + k ) .  

From the three-term recurrence relation of the Laguerre polynomials: 

n L Y ( s )  = ( 2 n  + q -  1 - s )L'Rl , ( s ) - (n+q - I)L'RL,(s) 

uble sum 

(12) 

we deduce the pure recurrence relation between the transition amplitude CH,n+q(xO): 

- i n +  q -  i)Cn-2,m+Q-2. 
Now from the so-called 'structure relation' [4] 

(i;) 
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we obtain 

- ( n  + ¶+ l)c",n+q(%) 

where d/dxo is replaced by a 'prime'. 
A differential equation can also he produced. From: 

d2 d 
S ~ [ L ~ ~ ) ( S ) ] - ( S  - 9  - l)-LL',g'(s)+nL?'(s) ds = O  (16) 

and replacing in (9, we get: 

x:c:.+,~xo~+x"c:.+,~xo~ - [$- (4+ * n  + 1 M + q 2  c",n+9(xo) =o. (17) 

The formulae (5) and (9)  give a representation of the Laguerre polynomial as convo- 
lution of two Hermite functions which appear as a particular case of an integral given 
in [5] p 503 equation (10): 

1 
t m  

Lp'( s) = N.,(s)  exp( -x2)Hn(x + m ) H n + J  x -m) dx (18) I-- 
with 

N&)= [2"+UJ;;fl!( -d72)4]-' 
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