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LETTER TO THE EDITOR

About polynomials related to multiphotonic bremsstrahlung
effects

A Ronveaux and S Belmehdi
Math. Phys., Facultés Universitaires N.D. de la Paix, 5000 Namut, Belgium

Received 18 June 1991]

Abstract. The symmetric convolution of two Hermite functions appears as transition
amplitude in multiphotonic Bremsstrahlung effect analysed by guantum oscillator models.
We identify these transition amplitudes in terms of Laguerre polynomials and we give new
recurrence relations and a differential equation for these physical quantities.

Polynomials obtained from the symmetric convolution of two Hermite functions have
recently been given explicitly [1]. These polynomials appear in multiphotonic
Bremsstrahlung effects using harmonic oscillator models with sudden displacement of
the equilibrium point x,. The aim of this letter is to identify these polynomials as the
Laguerre polynomial which explain immediately the Bessel-type asymptotic behaviour.
We give also a more direct derivation of these polynomials, a differential equation,
and a pure recurrence relation for the transition amplitude.
The transition amplitude between two states n and n+gq is given by [1, 2]:

Cn,n-!—q(x!)):j ¢, (x)‘,[’nh?(xﬁxo) dx (l)

where ¢, (x) are the normalized wavefunctions of the one-dimensional harmonic
oscillator:

Ya(x) =(2"n1Vm) """ exp(—x*/2) H,(x) (2}

and H,(x) is the Hermite polynomial of degree # normalized in the usual way:
+oo

J [H.(x)]} exp(—x?) dx = 7'/*2"n.
The result given in [2] for n =1 is extended to any n in {1] in the following form:
nl(n+ g\’ ) . o (—x3/2)*
2¢ ) exp(=xo/ D—%0)" <) (a + )T’
Using the definition of the Laguerre polynomials [3]

n {n+g) s
(q) — kA
L= X ) g+ 1ot &t

Cn,n+q(x(}) =( (3)

(4)
we can write the transition amplitade (3) as

Xo
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from which the asymptotic behaviour is immediately obtained from the well known
limit relation of the Laguerre polynomials [3]:

lim [n“"LE,‘”(%) ] = 5792, (2V5) (6)

n—co

where J,(x) is the usual Bessel function. With

n!
—~ n—q/z
{n+qg)! (7)
and using the author notation [1] xo = y/+/2n, equations (5) and (6) with s = y*/4 give:
m.+q( )-*( 1%, (») (8)
Relation {5) can be proved directly in the following a Starting from {1)

+oo _ 2
Consg(X0) *—'\/—;[22”""!(" +q)? I BXP( —%—M) H,(x)H, . 4(x—xo) dx

o 2
1 2n+g, —-1/2 2 i 2
=ﬁ[2 nl{n+q)!] exp(—xz/4) ds exp{-s°)
xH,,(s+1§9)H,,+q(s —%) (9)

with s =x —x,/2.
The Taylor-Maclaurin development of H, (s+x0/2) in the integral gives:

+o0

= \/%[22"”:1!(:1 + @)1V exp(~xi/4) J' ds exp(—s?)

-0

[EEPE) E ) o) o

Now the Appel property of the Hermite polynomials:

H:.zann_l (11)

n!
H(k} 2"5—' _
{n k)' n k

and the orthogonality property of the Hermite polynomials reduces the double sum
to the single sum {3) (r=g+k).
From the three-term recurrence relation of the Laguerre polynomials:
nL(s)=Q2n+g—-1-5s)L'2,(s)~(n+g—1)L{5(s) (12)
we deduce the pure recurrence relation between the transition amplitude C, ,.4.,(xp):

(n+g)n+q-1)1" _ . X |:n-+-q—1]"'2
n[ (1) ] Cn.n+q(xo)—(2n+q-l— 2) T Cr_tnrq—1(X0)

I's 1 ay M 1)
—\nTgd—- 1) ntg-2- 13y

Now from the so-called ‘structure relation’ [4]

_sd—iLw.(s)=(n+q+1)u,:*’(s)—(n+I)Lif’lu(s) (14)
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we gbtain

_.’Eg(n+q+l

1/2
2 n+1 ) C::+l,rl+q+l(x0)

2 1 1/2
=[[(n+q+1)(n+1)1‘”+(?—§)(”—ﬂ—1'*3—) ]cm,mﬂ(xo)
_(n+q+}-)cn.n+q(x0) (15)

where d/dx, is replaced by a ‘prime’.
A differential equation can also be produced. From:

dZ
L)~ (5 — g — 1)~ L (5)+ nLi(5) =0 (16)
ds ds
and replacing in (5), we get:
x4
X6C i q{Xo) + X0Ch nig(X0) — [f— (g+2n+1)x5+ qz} Coneg(X0) =0. (a7

The formulae (5) and (95 give a representation of the Laguerre polynomial as convo-
lution of two Hermite functions which appear as a particular case of an integral given
in [5] p 503 equation (10):

400

Li(s) = N,,(s) J. exp(—x*)H,(x+vs/2)H,, (x—v5/2)dx  (18)

with

N, (s)=[2"""Van!(~Vs72)7]
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